

Charm decays Within the Standard Model And beyond

Marina Artuso Syracuse University

PANIC 2005, Santa Fe, New Mexico, October 26, 2005

Prologue: the beauty of charm

- Its discovery provided an important validation of the Standard Model.
- Its mass scale makes it an ideal laboratory to probe QCD in the non-perturbative domain.
- The study of its decays probes the CKM sector of the Standard Model
 - Directly (V_{cs}, V_{cd})
 - Indirectly, improving our knowledge of the hadronic matrix elements affecting B decays
- Charm decays provide a unique window on new physics affecting the u-quark-type dynamics.

Quark Mixing

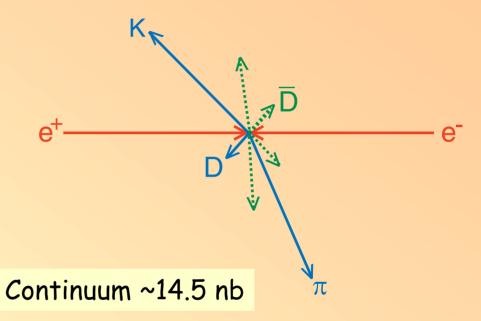
 Weak interaction couples weak eigenstates, not mass eigenstates: CKM matrix relates these two

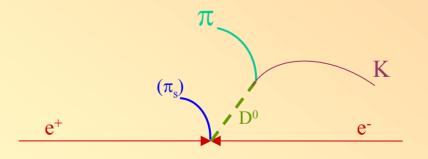
weak eigenstates V_{CKM} mass eigenstates

mass Wolfenstein eigenstates parameterization

To λ^3 in real part & λ^5 in im. part

CKM unitary \rightarrow described by 4 parameters (3 real, 1 imaginary: e.g. A, λ, ρ, η)




Experimental methods

- •DD production at threshold: used by Mark III, and more recently by CLEO-c and BES-II.
 - Unique event properties
 - \triangleright Only $D\overline{D}$ not $D\overline{D}x$ produced
 - Large cross sections:

$$\sigma(D^{\circ}\overline{D}^{\circ}) = 3.72\pm0.09 \text{ nb}$$
 $\sigma(D^{+}D^{-}) = 2.82\pm0.09 \text{ nb}$

- Ease of 8 measurements using "double tags"
- B-factories (e⁺e⁻) + fixed target
 & collider experiments at hadron
 machines
 - D displaced vertex
 - •D*+ $\rightarrow \pi^+D^0$ tag

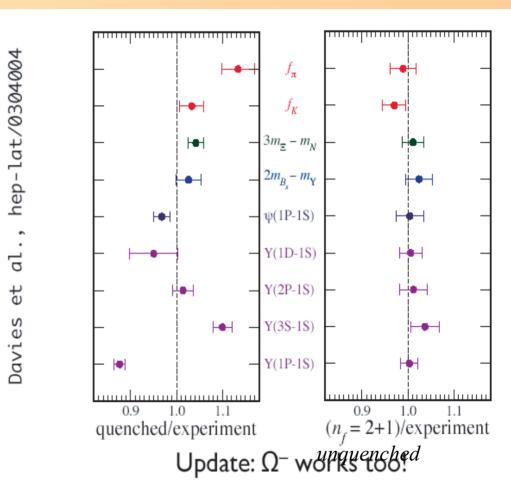
Theoretical Tools

In order to extract fundamental Standard Model parameters we need to relate the world of hadrons to the world of quarks. The theoretical tools available are:

1. Lattice QCD: Theory (unquenched), still has moderate systematic errors; however theoretical accuracy can be improved in a controlled fashion.

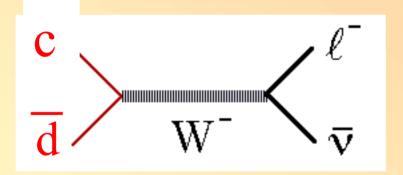
2. QCD Sum Rules:

- Relationship between phenomenological and theoretical spectral functions;
- Theoretical spectral functions are calculated from two or threepoint correlators in perturbative QCD, including corrections from the OPE
- Many parameters, difficult to improve their accuracy in a systematic fashion.


3. Phenomenological models

Important contributions to our understanding of charm decays; no way to improve these predictions in any systematic way

Predictive lattice QCD

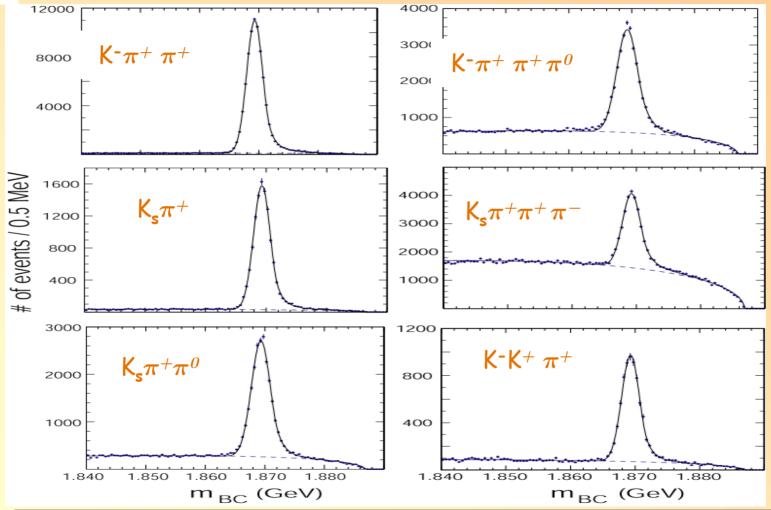

- The foundations: unquenched lattice QCD demonstrated that it can reproduce several "golden properties"
- Predictive lattice
 QCD:
 - f_D
 - Semileptonic D decay form factors
 - $M(B_c)$

Leptonic Decays: $D^+ \rightarrow \ell^+ \nu$

c and \overline{d} can annihilate probability is ∞ to wave function overlap

$$\Gamma(D^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_F^2 f_D^2 m_{\ell}^2 M_D \left(1 - \frac{m_{\ell}^2}{M_D^2} \right)^2 |V_{cd}|^2$$

 $d \rightarrow s V_{cd} \rightarrow V_{cs}$ same process in the D_s system $(f_{D_s^+})$


The importance of measuring the decay constants f_{D^+} and f_{D_s}

- We can compare theoretical calculations of f_D to experimental data and gain confidence in theory's ability to predict f_B
 - f_B is necessary to translate of $B^o\text{-}\overline{B^o}$ mixing data into $|V_{td}|$ thus constraining $\rho\text{-}\eta$
 - $f_{D^+}/f_{D_s^+}$ checks calculations of f_B/f_{B_s}
- Measurement of f_D & semileptonic form factors provide a check on theory independent of V_{cd} and V_{cs}

$$\frac{1}{\Gamma(D^{+} \to \ell \nu)} \frac{d\Gamma(D^{+} \to \pi e \nu)}{dq^{2}} \alpha \frac{P_{\pi}^{3} \left| f_{+}(q^{2}) \right|^{2}}{f_{D^{+}}^{2}}$$

New f_D⁺ measurement from CLEO-c

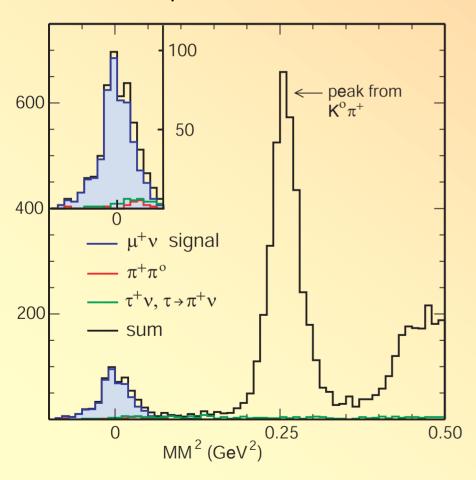
of tags = 158,354±496, includes charge-conjugate modes

f_D⁺ measurement technique

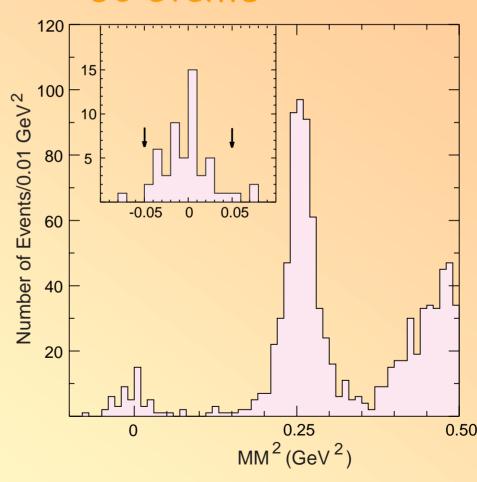
- > CLEO-c uses a sample tagged by D⁺ hadronic decays (281 pb⁻¹ to search for D⁺ $\rightarrow \mu^+ \nu$)
- Use neutrino MM² observable to discriminate between signal and background:

$$MM^{2} = (E_{beam} - E_{\mu})^{2} - (-\overrightarrow{P_{D^{-}}} - \overrightarrow{P_{\mu}})^{2}$$

- \gt Signal peaks at MM² = 0
- > Additional cuts to suppress background:
 - > No additional charged tracks from event vertex
 - \blacktriangleright Largest unmatched shower energy less than 0.25 GeV, to suppress $\pi^+\pi^0$
 - Muon candidate consistent with minimum ionizing particle (E_{cal} < 300 MeV in EM cal)


 Systematic
- > Systematic errors are all determined using DATA
- > Detailed background studies based on MC+ DATA

errors are small and well understood



The D⁺ $\rightarrow \mu^+ \nu$ signal

MC Expectations from 1.7 fb⁻¹, 30 X data

281 pb⁻¹ data set 50 events

Deriving a Value for f_{D+}

Backgrounds			
Mode	B(%)	# Events	
π+π0	0.13±0.02	1.40±0.18±0.22	
$\mathrm{K}^0\pi^+$	2.77±0.18	0.33±0.19±0.02	
$\tau^+ \nu \ (\tau \rightarrow \pi^+ \nu)$	2.65* <i>β</i> (D⁺→μ⁺ν)	1.08±0.15±0.16	
Other D+, D°		<0.4, <0.4 @ 90% c.l.	
Continuum		<1.2 @ 90% c.l.	
Total		$2.81 \pm 0.30^{+0.84}_{-0.27}$	

•
$$\mathcal{B}(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$$

•
$$f_{D^{+}} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}$$

• $\mathcal{B}(D^+ \to e^+ v) < 2.4 \times 10^{-5} @ 90\% c.l.$

rules out some non-Standard model theories

Efficiencies: μ^+ detection (69.4%); extra shower (96.1%); correction for easier tag reconstruction in $\mu^+\nu$ events (1.5%)

Comparison with Theory

- CLEO-c new measurement
- BES measurement based on 2.67±1.74 events
- New Fermilab-MILC result
- Current Lattice measurement (unquenched light flavors) is consistent at 37% cl with CLEO-c result

Semileptonic Decays: D → Xℓ+v

- In principle, the best way to $q^2 = \left(p_D^\mu p_{hadron}^\mu\right)^2 = m_D^2 + m_P^2 2E_P m_D$ determine several magnitudes of CKM elements, is to use semileptonic decays. Decay rate $\alpha |V_{ca}|^2$
- ◆ This is how V_{us} and V_{cb} have been determined

$$\frac{d\Gamma(D^+ \to XeV)}{dq^2} =$$

 $P_{X}^{3}\left|f_{+}(q^{2})\right|^{2}$

Strong interaction effects

Goals in Semileptonic Decays

- Assuming V_{cs} and V_{cd} known:
 - D \rightarrow K(K*) $\ell\nu$ determine form factor shapes & distinguish among models + test lattice QCD predictions
 - D $\rightarrow \pi \rightarrow \ell \nu$
- · Lattice checks comparing semileptonic ff & fD
- Assuming lattice predictions OK:
 - measurements of V_{cd} & V_{cs} (+ V_{cb} would provide an important unitarity check)
 - V_{ub} use $D \rightarrow \rho \ell \nu$ to get form-factor for $B \rightarrow \rho \ell \nu$, at same $v \cdot v$ point using HQET (& $\pi \ell \nu$)

Ligeti-Wise PRD53,4947(1996)
Grinstein-Pirjol PLB533,8(2002)

Exclusive semileptonic decays from $\psi(3770)$ data

Recent data from CLEO-c and BES-II, use the kinematic variable

$$U \equiv E_{miss} - |\vec{p}_{miss}|$$

to select a specific semileptonic channel

CLEO-c (57 pb⁻¹)
$$- D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}$$

$$- D^{-} \rightarrow K_{s} \pi^{-}$$

$$- D^{-} \rightarrow K^{+} \pi^{-} \pi^{0}$$

$$- D^{-} \rightarrow K^{+} \pi^{-} \pi^{0}$$

$$- D^{-} \rightarrow K^{+} \pi^{-} \pi^{0}$$

$$- D^{-} \rightarrow K^{+} \pi^{-} \pi^{-} \pi^{0}$$

$$- D^{-} \rightarrow K_{s} \pi^{-} \pi^{-} \pi^{0}$$

$$- D^{-} \rightarrow K_{s} \pi^{-} \pi^{-} \pi^{0}$$

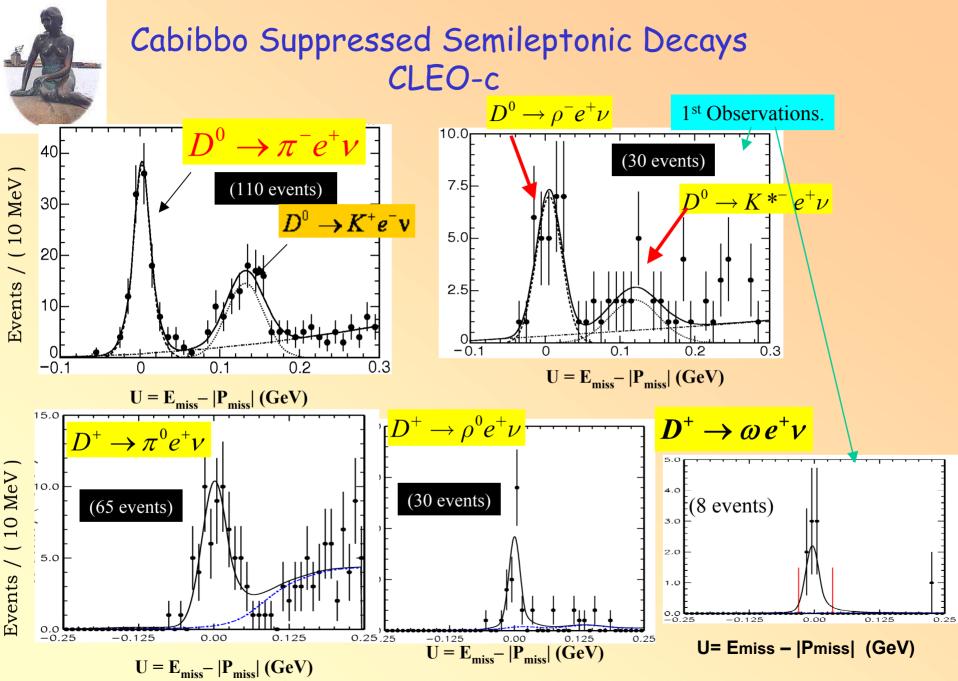
$$- D^{0} \rightarrow K^{-} \pi^{+}$$

$$- D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$$

$$- D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$$

$$- D^{0} \rightarrow K^{-} \pi^{+} \pi^{0}$$

$$- D^{0} \rightarrow K_{s} \pi^{-} \pi^{+} \pi^{0}$$

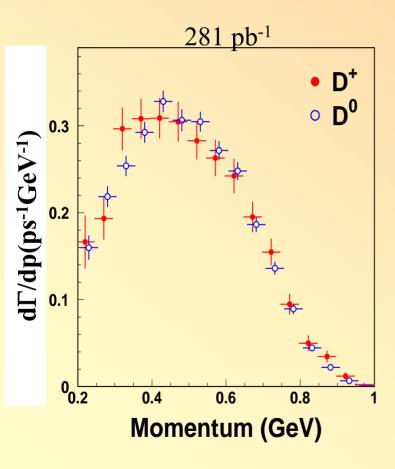

$$- D^{0} \rightarrow K_{s} \pi^{-} \pi^{+} \pi^{0}$$

$$- D^{0} \rightarrow K_{s} \pi^{0}$$

$$- D^{0} \rightarrow K_{s} \pi^{0}$$

$$- D^{0} \rightarrow K^{-} K^{+} \pi^{0} \pi^{0}$$

Tagging modes


Exclusive branching fractions

First measurements by CLEO-c

Decay Mode	8(%) (CLEO-c)	8(%) (BES-II)	B(%) (my ave including others)
$D^{\circ} \rightarrow K^{-}e^{+}v_{e}$	3.44±0.10±0.10	3.82±0.40±0.27	3.54±0.11
$D^{\circ} \rightarrow \pi^{-}e^{+}v_{e}$	0.262±0.025±0.008	0.33±0.13±0.03	0.285±0.018
$D^{\circ} \rightarrow K^{*-}e^{+}v_{e}$	2.16±0.15±0.08		2.14±0.16
$D^{\circ} \rightarrow \rho^{-}e^{+}v_{e}$	0.194±0.039±0.013		
$D^+ \rightarrow \overline{K}^{\circ} e^+ v_e$	8.71 ±0.38±0.37		8.31±0.44
$D^+ \rightarrow \pi^0 e^+ v_e$	0.44±0.06±0.03		0.43±0.06
$D^+ \rightarrow \overline{K}^{*o} e^+ v_e$	5.56±0.27±0.23		5.61±0.32
$D^+ \rightarrow \rho^{\circ} e^+ v_e$	0.21±0.04±0.01		0.22±0.04
$D^+ \rightarrow \omega^{\circ} e^+ v_e$	$0.16^{+0.07}_{-0.01} \pm 0.01$		

Inclusive semileptonic branching fractions (preliminary - CLEO-c)

$$B(D^{+} \to Xev) = (16.19 \pm 0.20 \pm 0.36)\%$$

$$\sum B(D^{+} \to Xev)_{excl} = (15.1 \pm 0.50 \pm 0.5)\%$$

$$B(D^{0} \to Xev) = (6.45 \pm 0.17 \pm 0.15)\%$$

$$\sum B(D^{0} \to Xev)_{excl} = (6.1 \pm 0.2 \pm 0.2)\%$$
Are the charged and neutral semileptonic widths equal?
$$\frac{\Gamma(D^{0} \to Xe^{+}v_{e})}{\Gamma(D^{+} \to Xe^{+}v_{e})} = 1.01 \pm 0.03(stat) \pm 0.03(sys)$$

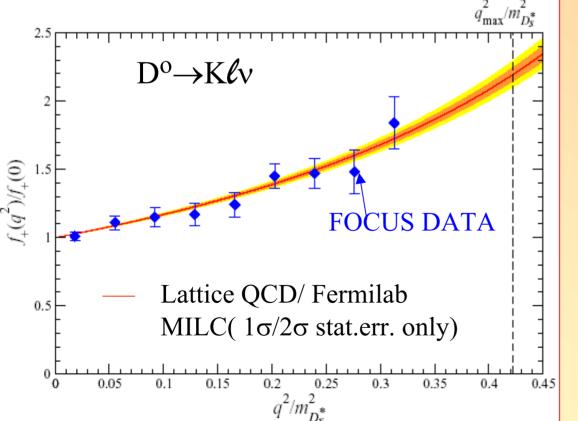
$$\frac{\Gamma(D^{0} \to K^{-}e^{+}v_{e})}{\Gamma(D^{+} \to \overline{K}^{0}e^{+}v_{e})} = 1.00 \pm 0.05(stat) \pm 0.04(sys)$$

$$\frac{\Gamma(D^{0} \to K^{-}e^{+}v_{e})}{\Gamma(D^{+} \to \overline{K}^{0}e^{+}v_{e})} = 1.08 \pm 0.22(stat) \pm 0.07(sys)$$

Lab momentum spectrum – no FSR correction

Lattice comparison - the shape of $f^+(q^2)$

Modern parameterization of the form factors proposed by

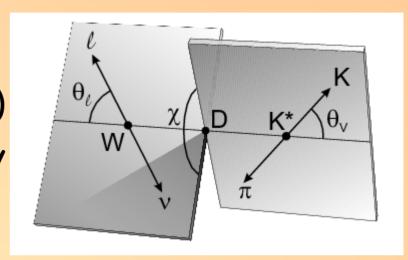

Becirevic & Kaidalov (BK):

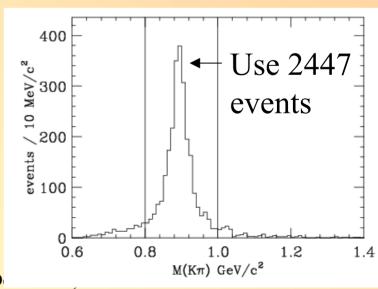
$$\int \left(\frac{1}{1 - q^2 / m_{D_s^*}^2} - \frac{1}{1 - \alpha q^2 / m_{D_s^*}^2} \right)$$

Representing contributions beyond the lowest lying resonances (D*)

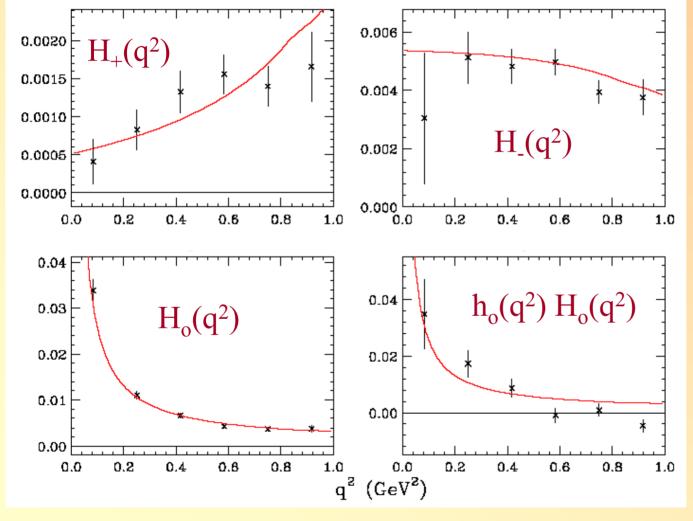
Comprehensive analysis by Fajfer and Kamenik shows that including the next radial excitation in ff gives good fits to measured branching fractions.

Fajfer et al. hep-ph/0506051 and 0412140

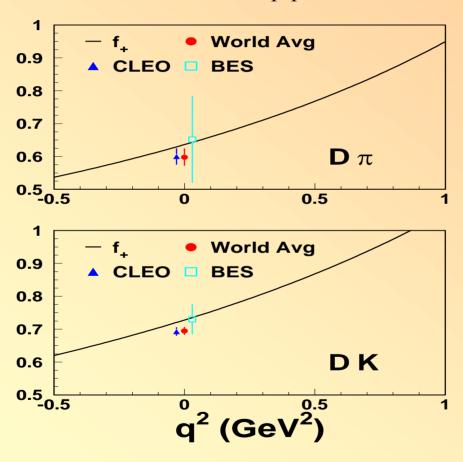

form factor shapes: what we know


$\alpha(D^0 \rightarrow K \ell \nu)$			
Lattice (Fermilab-MILC hep-ph/0408306)	0.50±0.04(stat)		
FOCUS	0.28 ±0.08 ±0.07		
CLEO III	$0.36 \pm 0.10^{+0.03}_{-0.07}$		
Belle	0.40 ±0.12 ±0.19		
$\alpha(D^o \rightarrow \pi \ell \nu)$			
Lattice (Fermilab-MILC hep-ph/0408306)	0.44 ±0.04(stat)		
CLEO III	$0.37^{+0.20}_{-0.31}\pm0.15$		
Belle	0.03 ±0.27±0.13		

CLEO-c D+ $\rightarrow K^-\pi^+e^+\nu$ Form Factors


- $K^-\pi^+$ mostly K^* with some s-wave (1st seen by FOCUS)
- For D \rightarrow V e⁺v, use 3 helicity amplitudes H_o(q²), H₊(q²), & H₋(q²)
- Add $h_o(q^2) \cdot H_o(q^2)$ to account for s-wave term
- Use 281 pb⁻¹

Form Factor Results (non-parametric analysis; CLEO-c)



- Significant s-wave amplitude confirmed
- H_{+,-,0} helicity amplitudes
- h_o models swave component
- No evidence for d or f wave

Form factor normalization $f_{+}^{K}(0), f_{+}^{\pi}(0)$

Cuves: FNAL-MILC hep-ph/0408306

If we assume that the lattice shape is OK ⇒ we can use measured branching fractions to validate the normalization

Lattice comparison: f_D and semileptonic form factors

• We can use a quantity independent of V_{cd} to do a CKM independent lattice check:

$$R_{\ell sl} \equiv \sqrt{\frac{\Gamma(D^{+} \to \mu \upsilon)}{\Gamma(D \to \pi \ell \upsilon)}} \propto \frac{f_{D}}{f_{+}^{\pi}(0)}$$

· I obtain:

$$R_{\ell sl}^{th} = 0.212 \pm 0.028$$

$$R_{\ell sl}^{\rm exp} = 0.249 \pm 0.022$$

Theory and data consistent at 28% C.L.

The CKM Matrix

- Multifaceted unitarity checks
- · Charm decays contribute:
 - With precision measurements of V_{cs} and V_{cd} ; assuming that shape and normalization of the form factors are OK:

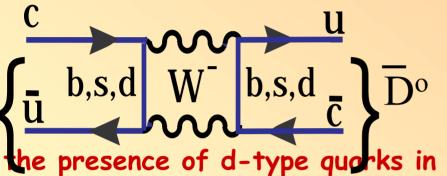
LEP W data 0.976±0.014, assuming unitarity hep-ex/0412015
$$= 0.957 \pm 0.017 (exp) \pm 0.093 (th)$$

$$V_{cd} = 0.213 \pm 0.008(exp) \pm 0.021(th)$$

 $\sqrt[4]{v,v}$ charm production off valence d quark 0.224±0.012 (PDG04 ave)

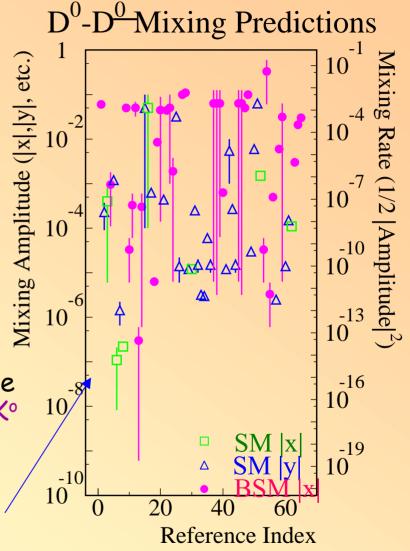
A rough unitarity check on on the second row:

$$1 - (V_{cd}^2 + V_{cs}^2 + V_{cb}^2) = 0.037 \pm 0.181$$



Charm as a probe of new physics

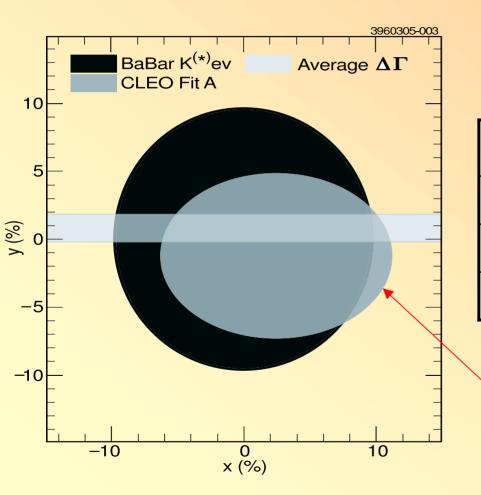
- Unique opportunities in three areas of investigation:
 - Mixing
 - CP violation
 - Rare decays
- · Smoking gun or long distance effect?
 - Although all three phenomena suppressed in Standard Model, enhancement due to long distance effects may mimic new physics.


Case study I: mixing

Mixing could proceed via

the loop makes the SM expectations for D° - \overline{D}° mixing small compared with systems involving u-type quarks in the box diagram because these loops include 1 dominant super-heavy quark (t): K° (50%), B° (20%) & B_s (50%)

New physics in loops implies x $\equiv \Delta M/\Gamma >> y \equiv \Delta \Gamma / 2\Gamma$; but long range effects complicate predictions


D° D° mixing: the data

- The study of D° wrong-sign $K\pi$ yields has been a key step in our experimental study of D° D° mixing.
- · Caveats:
 - Complicated by interference between DCSD & mixing [strong phase $\delta \Rightarrow$ data constrain only x' & y']
 - Complicated by CP violation

Experiment	x' ² (95 % C.L.) (X10 ⁻³)	Y'(95% C.L.) (X10 ⁻³)
Belle (2004)	0.89	-30< Y'<27
BaBar (2003)	2.2	-56< Y'<39
FOCUS (2001)	1.52	-124< Y'<-5
CLEO (2000)	0.82	-58< Y'<10

D° D° mixing: the data II

•D° semileptonic decays: $R_{ws} = \frac{1}{2}(x^2+y^2)$ [no strong phase δ]


Experiment	R _M (95% CL)	$\sqrt{x^2+y^2}$
BaBar 04	0.0046	0.1
Belle 05	0.0016	0.056
CLEO 05	0.0091	0.135

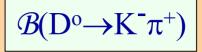
• Dalitz plot analysis of $D^0 \rightarrow K_s^0 \pi^+ \pi^-$ (CLEO II.V) comparable sensitivity

CP/T Violation

- Unexpectedly large CP violation asymmetries may be a better signature for new physics (0.01-0.001)
- CP violation can be studied in a variety of ways:
 - Direct CP violation
 - CP violation in mixing
 - T violation in 4-body decays of D⁰/D⁺ (assuming CPT) and studying triple product correlations
 - Exploiting quantum coherence of DD produced in $\psi(3770)$ decays

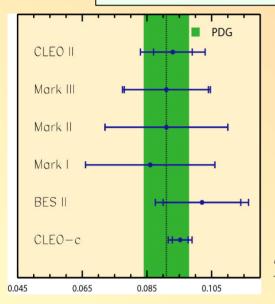
CP/T Violation: a sampler of recent data

Experiment	Decay mode	A _{CP} (%)	Notes
BaBar	$D^+ \rightarrow K^- K^+ \pi^+$	1.4±1.0 ±0.8	
BaBar	$D^+ \rightarrow \phi^+ \pi^+$	0.2±1.5±0.6	Res. Substr.
BaBar	$D^+ \to K^{*0} K^+$	0.9±1.7±0.7	Of $D^+ \rightarrow K^- K^+ \pi^+$
CLEO II.V	$D^0 \rightarrow \pi^+ \pi^- \pi^0$	1 +9 ±8	Dalitz plot analysis constraints also $\pi \pi s$ -wave component
FOCUS	$D^0 \rightarrow K^+K^-\pi^+\pi^-$	1.0 ±5.7±3.7	T violation through triple
FOCUS	$D^+ \rightarrow K_S^0 K^+ \pi^+ \pi^-$	2.3 ±6.2±2.2	product correlations
FOCUS	$D_S \rightarrow K_S^0 K^+\pi^+\pi^-$	-3.6 ±6.7±2.3	Correlations


Epilogue: charm as a facet of beauty

- Charm improves b decay studies in several ways:
 - D absolute branching fractions ⇒ B absolute branching fractions
 - Dalitz plot analyses \rightarrow determination of the angle γ

D absolute branching fractions


$$\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)$$

PDG

0.050

0.060

CLEO-c corrected for final state radiation (fsr), others not

ARGUS (B)

ALEPH 91

HRS

Mark III

Mark I

BES II

CLEO-c

0.010

0.020

0.030

0.040

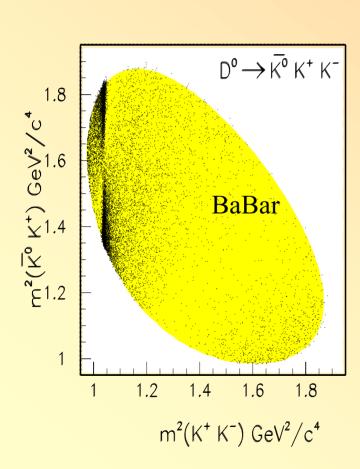
CLEO II average

ALEPH 97

ARGUS (D*+)

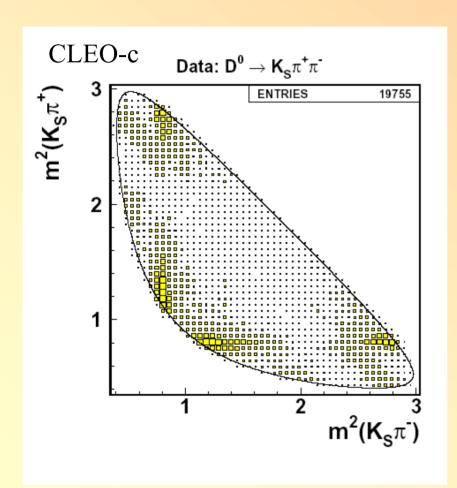

Three best measurements

B (%)	Error(%)	Source
9.3±0.6±0.8	10.8	CLEO II
9.1±1.3±0.4	14.9	WK III
9.52 ±0.25±0.27	3.9	CLEO-c


B (%)	Error(%)	Source
3.82±0.07±0.12	3.6	CLEO II
3.90±0.09±0.12	3.8	ALEPH
3.91±0.08 ±0.09	3.1	CLEO-c

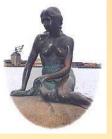
My averages: $(9.51\pm0.34)\%$


(3.92±0.08)%, both corrected for fsr


Dalitz plot studies

- Large fraction of the known D meson decay rate proceeds through 3 body hadronic decays involving π and K.
- These decays are dominated by quasi-2 body final states with a rich set of resonance.
- Their strength and interference patterns useful to understand light hadron spectroscopy.

Charm factories at threshold contribution

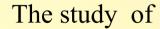


- Input to determination of CKM phase γ from $B \rightarrow D[K_s \pi^+ \pi^-]K$
- Recent results from BaBar and Belle:

$$\phi_3 = (77^{+17}_{-19} \pm 13 \pm 11) \text{ deg}$$


$$\gamma = (70 \pm 26 \pm 10 \pm 10) \text{ deg}$$

Third error is model dependence of Dalitz plot fit: may be reduced by simultaneous fit to generic $K_s\pi\pi$ and CP tagged (CP even and odd) Dalitz plots.


Conclusions I

- Precision studies of charm and beauty decays are a crucial complement to energy frontier experiments to develop a more complete understanding of fundamental particles and their interactions (new physics):
 - The synergistic efforts of theorists and experimentalist will lead to a better understanding of QCD in the non-perturbative regime
 - ⇒Precision tests of the Standard Model
 - ⇒New tools applicable to other theoretical particle physics problems.

Conclusions II

- Large data samples at center-of-mass energies near DD (and $D_s\bar{D}_s$) threshold are providing unique constraints to the Standard Model and may uncover unique signatures of new physics.
- The study of charm and beauty decays at e⁺e⁻ & hadron collider b-factories represent another facet of this rich program

charm

and

beauty

is a key element of the next generation of high energy physics experiments.